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Recent experiments have established that information can be encoded in the spike times of neurons relative to the phase of a background
oscillation in the local field potential—a phenomenon referred to as “phase-of-firing coding” (PoFC). These firing phase preferences
could result from combining an oscillation in the input current with a stimulus-dependent static component that would produce the
variations in preferred phase, but it remains unclear whether these phases are an epiphenomenon or really affect neuronal interactions—
only then could they have a functional role. Here we show that PoFC has a major impact on downstream learning and decoding with the
now well established spike timing-dependent plasticity (STDP). To be precise, we demonstrate with simulations how a single neuron
equipped with STDP robustly detects a pattern of input currents automatically encoded in the phases of a subset of its afferents, and
repeating at random intervals. Remarkably, learning is possible even when only a small fraction of the afferents (�10%) exhibits PoFC.
The ability of STDP to detect repeating patterns had been noted before in continuous activity, but it turns out that oscillations greatly
facilitate learning. A benchmark with more conventional rate-based codes demonstrates the superiority of oscillations and PoFC for both
STDP-based learning and the speed of decoding: the oscillation partially formats the input spike times, so that they mainly depend on the
current input currents, and can be efficiently learned by STDP and then recognized in just one oscillation cycle. This suggests a major
functional role for oscillatory brain activity that has been widely reported experimentally.

Introduction
Whether spike times contain additional information with respect
to time-averaged firing rates—a theory referred to as “temporal
coding”—is still a matter of debate. It has been argued that the
speed of processing in sensory pathways makes it difficult to ob-
tain a reliable measure of the firing rates of individual neurons
within the available time window (Thorpe and Imbert, 1989;
Gautrais and Thorpe, 1998). However, the firing rate of a neuron
population with similar selectivity could be reliably estimated
over an arbitrary small time window provided the population is
large enough. This concept, referred to as “population coding”
(Pouget et al., 2000), has often been proposed to explain how the
brain might cancel out the variability frequently observed in indi-
vidual spike trains (Softky and Koch, 1993; Shadlen and Newsome,
1998).

However, a recent experimental study effectively ruled out the
possibility that only population coding is used, at least in the
mouse retina, simply because its bandwidth is too low to account
for the observed behavioral performance (Jacobs et al., 2009). It

appears that some information has to be encoded in the spike
times. This raises a number of important questions, such as first,
how (somewhat) reliable spike times can be produced; second,
how those spike times can be decoded, that is, how a neuron
response can be made selective to a given input spike pattern; and
third, how this selectivity could be learned. So far, most of the
research effort has focused on the first question.

In some experimental paradigms, a given sensory system is in
a resting state before being presented with a stimulus. The stim-
ulus onset then provides an external reference time, and it has
been repeatedly demonstrated that the response latencies with
respect to it can potentially encode information (Celebrini et al.,
1993; Gawne et al., 1996; Albrecht et al., 2002; Kiani et al., 2005).
The relative latencies are sometimes even more informative
(Johansson and Birznieks, 2004; Chase and Young, 2007; Gollisch
and Meister, 2008). Benchmark 3 (see below) is an attempt to
model how selectivity can emerge in those paradigms.

However most of the usual cognitive processes are ongoing
and cannot make use of an external event as a reference. In these
cases, it has been suggested that when the local field potential
presents a prominent oscillation, it may serve as a time reference,
and a number of mechanisms have been proposed to account for
stimulus-dependent phase locking (Buzsáki and Chrobak, 1995;
Hopfield, 1995; Mehta et al., 2002; Brody and Hopfield, 2003;
Buzsáki and Draguhn, 2004; Lisman, 2005; Fries et al., 2007) and
have experimental support in vitro (McLelland and Paulsen,
2009). Consistent with those models, more and more in vivo
evidence has been found for the so called “phase-of-firing cod-
ing” (PoFC) (see Table 1).
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Despite this converging evidence, the second and third ques-
tions remain largely unanswered. Specifically, we still have little
idea how might the brain decode information contained in phase
information, nor is clear how those patterns could be learnt. Here
we demonstrate through simulations that the now well established
spike timing-dependent plasticity (STDP) (for a recent review, see
Caporale and Dan, 2008) can efficiently solve the problem (bench-
mark 4 below). The ability of STDP to learn and detect spike patterns
had been noted before in continuous activity (Masquelier et al.,
2008), but not in an oscillatory mode like here, and it turns out that
learning is significantly facilitated in this case.

Materials and Methods
The problem: detecting a repeating activation pattern. We want to solve a
difficult abstract problem with which a single neuron could be con-
fronted: detecting the existence of patterns of input activation involving
an unknown subset of the afferents, under conditions where the duration
of the patterns is unpredictable and where the patterns recur at unpre-
dictable intervals.

To be precise, let us consider a matrix of real values, corresponding to
for now abstract neuronal activation levels, scaled in [0, 1] (see Fig. 1).
The number of rows n is the number of neurons in the population (here
2000). Each column corresponds to the neuronal activation pattern for a
certain time �t, drawn from an exponential distribution with mean 250
ms. Then the neurons’ activation levels all change at the same time,
adopting the values of the next column and so on. Now consider the
situation where a fraction x (10% in the baseline simulations) of a given
column, referred to as “the pattern,” is copied at random intervals (so
that the interpattern interval has an exponential distribution with mean
1250 ms—the pattern is thus there 20% of the time, and “concerns” only
x percent of the population). The copied values are referred to as pattern
activation levels. Note that in the figure, and in this paper in general, we
have arranged it so that the neurons in the pattern have the lowest indexes
to make the pattern easier to see, but of course the indexes are arbitrary.

Here we investigated various biologically plausible mechanisms to
convert the abstract activation levels into spikes, and tested whether a
downstream neuron equipped with STDP was able to detect and learn the
repeating pattern. To make the problem more difficult, we normalized
the lines and columns of the matrix, such that the time-averaged activa-
tion levels are uniform over the population, and the population-averaged
activation levels are constant along the whole simulation. We built such
matrices through successive normalizations, and we would be happy to
make them available to anyone wanting to benchmark other encoding/
decoding algorithms.

Neuronal models. The simulations were run with Brian (http://www.
briansimulator.org/), a new Python-based clock-driven spiking neural
network simulator (Goodman and Brette, 2008). The code has been
made available on ModelDB (http://senselab.med.yale.edu/ShowModel.
asp?model�123928).

In benchmark 1, we used Poisson input neurons. The matrix activa-
tion levels of Figure 1 were linearly mapped to their firing rates f. At each

time step dt � 0.1 ms, the probability of emitting a spike was propor-
tional to f � dt.

In all other simulations we used a leaky integrate-and-fire (LIF)
neuron model, receiving a current made of a time-dependent input
I(t) plus a Gaussian white noise �(t) [with ��(t)� � 0 and ��(t)�(s)� �
�(t � s)]. The membrane potential obeys to the following Langevin
equation:

�m

dV

dt
� �V � El � RI�t� � � � � � ��m , (1)

whereV is the membrane potential, El � �70 mV is its resting value,
�m � 20 ms is the membrane time constant, R � 10 M� is its resistance,
and � � 0.015 � (Vt � Vr) � 0.09 mV is the standard deviation of the
noise. Whenever the threshold Vt � �54 mV is reached, a postsyn-
aptic spike is emitted, and the membrane potential is reset to Vr �
�60 mV and clamped there for a refractory period of 1 ms. The
differential equation is solved numerically (Euler method) with a time
step of dt � 0.1 ms.

We used n � 2000 input neurons, which receive input currents
I1, … In that are affinely mapped on the matrix activation levels of
Figure 1. In benchmark 4, they additionally receive a common sinu-
soidal drive:

i�t� �
a

2
� sin�2�f � t � ��, (2)

where a � 0.15 � Ithr � 0.24 nA [Ithr � (Vt � El)/R is the threshold
current] is the peak-to-peak-amplitude of the oscillation and f � 8 Hz its
frequency.

As can be seen in Figure 2, one downstream neuron is connected to all
the input neurons with normalized synaptic weights w1(t), … wn(t) in
[0, 1], so that its input current in Equation 1 is as follows:

I�t� � Imax �
j�1

n �
k�1

nj

wj(tj
k) � exp�t � tj

k

�s
� � ��t � tj

k�, (3)

where tj
1 … tj

nj denote the times of the spikes emitted by input neuron
j, �s � 5 ms is the synapse time constant, 	 is the Heaviside step
function:

��s� � � 1 if s 	 0
0 if s 
 0

, (4)

and Imax corresponds to the input current contributed by one input spike
right after it is received through a maximally reinforced synapse (w � 1).
We used various values for Imax (see below). The initial synaptic weights
w1(0), … wn(0) were randomly picked from a uniform distribution be-
tween 0 and an upper bound chosen such that w� � Imax � 8.6 
 10 �12 A,
where w� is the average of w1(0), … wn(0). This means that at the begin-
ning of the simulations, the equivalent of 186 synchronous spikes (that is,
a synchronized activity of about 10% of the network) is needed to reach
the threshold from the resting state.

Table 1. Experimental evidence for phase-of-firing coding

Animal Recording site Frequency band What is coded Reference

Locust Mushroom body Beta– gamma (20 –30 Hz) Odor identity Perez-Orive et al. (2002); Cassenaer and Laurent (2007)
Honeybee Antennal lobe Gamma Odor identity Stopfer et al. (1997)
Zebrafish Olfactory bulb Gamma Odor identity Friedrich et al. (2004)
Rat Olfactory bulb Gamma Odor identity Eeckman and Freeman (1990); David et al. (2009)
Rabbit Olfactory bulb Gamma Odor identity Kashiwadani et al. (1999)
Rat Hippocampus (CA1 and CA3) Theta Spatial location O’Keefe and Recce (1993); Mehta et al. (2002)
Rat Entorhinal cortex Theta Spatial location Hafting et al. (2008)
Cat V1 Gamma Line orientation König et al. (1995); Fries et al. (2001)
Macaque V1 Delta Visual (motion) features Montemurro et al. (2008)
Macaque V4 Theta Memorized image Lee et al. (2005)
Macaque Auditory cortex Theta Auditory stimulus identity Kayser et al. (2009)
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STDP model. Unless said otherwise we used
a classic “all-to-all” additive weight update rule
(Kempter et al., 1999; Song et al., 2000), where
all pairs (i, j) of postsynaptic and presynaptic
spikes contribute to the weight change:

�wj � � a� � exp�tj � ti

�� �
if tj � ti �LTP, applied at time ti�

�a� � exp��
tj � ti

�� �
if tj � ti �LTD, applied at time tj�

.

(5)

In one simulation of benchmark 4, we also im-
plemented the “nearest spike” mode in which
weight updates caused by one postsynaptic
spike are restricted at each synapse to the latest
preceding presynaptic spikes and the earliest
following one (Burkitt et al., 2004).

We used � � � 16.8 ms and � � � 33.7 ms, as
observed experimentally (Bi and Poo, 2001).
Since the additive STDP is not naturally
bounded we clipped the weights to [0, 1] after
each weight update. We used a � � 0.005, and
various ratios a �/a� (see below).

Mutual information. We used information
theory to quantify how good the postsynaptic
neuron is at detecting the pattern after conver-
gence. To be specific, we discretized the [800 s,
1000 s] period into 125 ms time bins. For each
of those bins, we determined whether the stimu-
lus (or pattern) was present more than half of the
time (case referred to as s) or not (s�), and whether
the postsynaptic neuron emitted at least one
spike (r) or not (r�). The mutual information between the postsynaptic re-
sponse and the presence of the stimulus is then given by the following:

MI � P�r, s� log2� P�r, s�

P�r� � P�s�� � P�r�, s� log2� P�r�, s�

P�r�� � P�s��
� P�r, s�� log2� P�r, s��

P�r� � P�s��� � P�r�, s�� log2� P�r�, s��

P�r�� � P�s���. (6)

Note that in signal detection terms, the first term corresponds to “hits,”
the second to “misses,” the third to “false alarms,” and the last one to
“correct rejections.”

A perfect detector would lead to P(r, s�) � P(r�, s) � 0, P(r, s) � P(s) �
P(r), and P(r�, s�) � P(s�) � P(r�). Therefore, an upper bound on the mutual
information is the following:

MImax ��P�s� log2 P�s� � P�s�� log2 P�s�� � HS, (7)

which is the entropy of the stimulus. Here P(s) � 1/5, leading to MImax �
0.72 bits.

Results
We benchmarked several mechanisms to encode the matrix acti-
vation levels of Figure 1 into spikes. The criterion was the degree
to which a downstream neuron equipped with STDP (Fig. 2) was
able to detect and learn the repeating pattern, starting from uni-
formly distributed random synaptic weights.

Table 2 summarizes the different benchmarks. We used Poisson
neurons in benchmark 1, and LIF neurons in the rest of them (Eq. 1).
In benchmark 3, we sometimes reset the potential of all the afferents
simultaneously, and in benchmark 4 we use an additional oscillatory
drive (Eq. 2). Each benchmark is detailed below.

Benchmark 1: Poisson input neurons
Poisson neurons are extensively used among the computational
neuroscience community. The first reason is that it is commonly
believed that the variability of neuronal responses is well described
by Poisson statistics (Softky and Koch, 1993; Shadlen and Newsome,
1998). Note that this view is under challenge because a number of
recent studies have shown that neuronal responses are too reliable
for the Poisson hypothesis to be tenable in the lateral geniculate
nucleus (Liu et al., 2001), the retina (Uzzell and Chichilnisky, 2004),
and the inferotemporal cortex (Amarasingham et al., 2006). The
second reason for the widespread use of Poisson-based modeling is
that they lead to mathematically tractable problems.

It thus seemed natural to include a Poisson coding scheme in
our benchmark. The matrix activation levels were linearly

Figure 1. Overview of the problem. Here we plot the abstract activation levels scaled in [0, 1] (represented by the gray levels,
white corresponding to 1 and black to 0) of a group of neurons ( y-axis), as a function of time (x-axis). For space reasons we have
only represented the first 300 of the 2000 afferents used in the simulations. All the activation levels change simultaneously every
�t, drawn from an exponential distribution with mean 250 ms. At random intervals, drawn from an exponential distribution with
mean 1250 ms, the pattern of activation levels for a subgroup of neurons (here indexed 0 … 199) repeats (rectangles). These
repeating values are referred to as pattern activation levels. Our goal is to find an encoding mechanism such that a downstream
neuron equipped with STDP could detect and become selective to this repeating pattern.
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Figure 2. Network architecture. Afferents 1 … n are shown on the left. They receive static
input currents I1 … In. In benchmark 4, they additionally receive a common oscillatory drive i(t).
They are all connected, through excitatory synapses with weights w1 … wn, to one down-
stream neuron equipped with STDP.
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mapped to the firing rates of the input neurons. A downstream
neuron equipped with STDP integrated these non-homogeneous
Poisson spike trains. An exhaustive search over the range of firing
rates used, the initial weight values, and the parameters Imax and
a�/a� failed to reveal any situation where the neuron was able to
learn the repeating pattern. Usually, the downstream neuron ei-
ther became silent after too much long-term depression (LTD),
or instead started bursting after all the synapses had been maxi-
mally reinforced. With a carefully tuned a�/a� ratio, it was also
possible to reach a balanced regime like that in the study by Song
et al. (2000), but the discharges were not related to the presence of
the pattern.

This failure is not surprising. STDP is sensitive to correlations
in the input spike times (Kempter et al., 1999; Song et al., 2000;
Gütig et al., 2003), not in the rates, like we have here. Detecting
such rate correlations would be possible with a rate-based Heb-
bian rule, but estimating the rates takes time: it would require at

least a few interspike intervals (ISIs) (Gautrais and Thorpe,
1998). Thus the pattern would need to be present for at least a few
typical ISIs to be detected. We will see how global resets or oscilla-
tions provide a way to detect the repeated pattern in just one ISI.

Benchmark 2: LIF input neurons
Another natural idea is to consider that
the matrix activation levels are currents,
and to feed them into LIF neurons. This
corresponds to Figure 2 with i(t) � 0.
Feeding a constant suprathreshold cur-
rent into a LIF neuron like here leads to
constant ISIs (i.e., periodic firing), except
for the noise, and the relation between the
input current and the ISI is bijective. This
means that from one pattern presenta-
tion to another the ISI for each input
neuron is the same (and thus so is the
rate). However, because the neurons
can be in a different state (i.e., have a
different membrane potential) when the
pattern is presented, depending on their
history, the offsets of their periodic spike
trains will differ. Because of these shifts,
spike times are not the same between pat-
tern presentations, and STDP fails again
to detect them, despite an exhaustive
search on the parameters Imax and a�/a�

and the range of input currents.

Benchmark 3: LIF input neurons
� resets
To eliminate the impact of the neuron his-
tory and align the spike trains, one can
think of a “global reset” operation, that is,
every now and then resetting the potential
of all the LIF input neurons to their reset
values. In the brain, this may be what is
happening in discrete sensory processing
such as saccades in vision, or sniffs in ol-
faction (Uchida et al., 2006). Humans
perform 3–5 saccades per second; we thus
chose to implement a reset every �t,
drawn from a normal distribution with
mean 250 ms and standard deviation 125
ms. Note that what is happening after a

reset is also equivalent to what would be happening after present-
ing a stimulus to a system originally in a resting state. Thus this
benchmark also corresponds to the “stimulus onset paradigms”
mentioned in Introduction.

We first set the proportion of afferents involved in the pattern
to be x � 10%. The matrix activation levels were then affinely
mapped into input currents between 1.0 � Ithr and 1.05 � Ithr,
which led to a mean input spike rate of 15.6 Hz. We chose Imax �
0.16 nA (meaning that the equivalent of 10 synchronous spikes
arriving through maximally reinforced synapses are needed to
reach the threshold from the resting state) and a�/a� � 0.78,
after an exhaustive 2D grid search (geometric progressions with
ratios 1.05 2 � 1.10 and 1.05, respectively) to maximize the final
mutual information as defined above.

Figure 3 illustrates the situation at the beginning of the simu-
lation. Figure 3A plots the spike trains from a subset of the affer-
ents, during the first 3 s of simulation. Three zoom insets

Figure 3. Resets— beginning of learning. A, Input spike trains from afferents 150 … 250, on the [0, 3 s] period. Note the silent
period lasting �50 ms after each reset. Gray rectangles designate the periods when the pattern is present, and the afferents that
are involved in it (here 0 … 199). Three insets zoom on adequate periods to illustrate that afferents involved in the pattern (0 …
199) have first spike times after resets (indicated by vertical lines) that are the same (except for the noise) for different pattern
presentations (the grid has a 20 ms time step and is aligned with the reset, marked with a solid line). This is not true for afferents
that are not involved in the pattern (200 … 1999) (however, those afferents have the same latencies in the two right insets
because their activation levels did not change), nor for resets outside pattern periods. It is this repeating “first spike wave” that
STDP can detect and learn. B, Postsynaptic membrane potential as a function of time. Notice how it drops after each reset, because
no input spikes are received. This is followed by a period when the membrane potential oscillates, because input spikes tend to be
synchronized after a reset. The horizontal dotted line shows the threshold. A postsynaptic spike, indicated by a vertical dotted line,
is emitted whenever it is reached. Again gray rectangles indicate pattern periods but not surprisingly, the response is not selective
to them at this stage. C, Distribution of synaptic weights at t � 3 s. Weights are still almost uniformly distributed at this stage
because few STDP updates have been made. D, Synaptic weights for afferents 0 … 199 (involved in the pattern) as a function of
their corresponding pattern activation levels. Both variables are uncorrelated at this stage.

Table 2. Summary of the different benchmarks

Neuronal model Activation levels mapped to Resets Additional oscillatory drive

1 Poisson Firing rate No No
2 LIF Static input current No No
3 LIF Static input current Yes No
4 LIF Static input current No Yes
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illustrate a key phenomenon: each time a
reset occurs while the pattern is present,
the first spikes after the reset for the affer-
ents in the pattern have the same latencies,
because these latencies only depend on the
pattern activation levels (except for the
noise, here responsible for a 3.1 ms me-
dian jitter). It is this repetitive “first spike
wave” that STDP is able to catch. Why
does this happen? Each time the postsyn-
aptic neuron fires to the repeating wave
(by chance at the start of the learning
phase), STDP reinforces the synaptic con-
nections with the afferents that took part
in firing it, thereby increasing the proba-
bility of firing again next time the wave
comes. This “reinforcement of causality
link” causes the selectivity to emerge
(Masquelier et al., 2008), as we shall see
below.

Figure 3B plots the membrane poten-
tial of the downstream neuron. At this
stage it is not yet selective to the pattern
(in gray), which is not surprising since we
started from uniformly distributed ran-
dom weights (Fig. 3C). For the same rea-
son, the pattern activation levels and the
corresponding weights are uncorrelated
at this stage (Fig. 3D).

Figure 4 plots the same variables after
802.5 s of simulated time and demon-
strates that selectivity has emerged. Postsynaptic spikes tend to
indicate periods when the pattern is present, but detection only
occurs when there is a reset during the pattern. The final weight
distribution is bimodal, as can be seen in Figure 4C, with synapses
either fully depressed or maximally reinforced, as usual with ad-
ditive STDP (van Rossum et al., 2000). At this stage the system has
converged and the synaptic weights are stable. As can be seen
from Figure 4D, the synapses that are reinforced correspond to
afferents within the pattern with the highest activation levels,
which in turn correspond to the first spikes in the wave illustrated
in the insets of Figure 3A. This is not surprising, since when a
neuron is presented successively with similar waves of input
spikes STDP is known to have the effect of concentrating synaptic
weights on afferents that consistently fire early (Song et al., 2000;
Delorme et al., 2001; Gerstner and Kistler, 2002; Guyonneau et
al., 2005; Guyonneau, 2006; Masquelier and Thorpe, 2007).

Using a STDP window with a negative integral like here [i.e.,
��a� 
 ��a�, that is, LTD tends to overcome long-term poten-
tiation (LTP)] leads to a subthreshold regime where the postsyn-
aptic neuron performs coincidence detection (Kempter et al.,
2001). Here, it became sensitive to the nearly simultaneous ar-
rival of the earliest spikes of the wave of Figure 3A insets by
reinforcing the corresponding synapses. When the pattern is pre-
sented, these earliest coincident spikes tend to make the postsyn-
aptic neuron fire. The postsynaptic spikes thus tend to indicate
the presence of the pattern, and the robustness of the detection can
be quantified with mutual information (see Materials and Methods).

We thus continued the simulation until t � 1000 s and computed
the mutual information over the [800 s, 1000 s] period. This was
done for 10 identical simulations, with different pseudorandomly
generated input matrices and initial weights. The average mutual
information was �0.3 bits. We then varied x, and computed the

average mutual information each time (note that the values for
Imax and a�/a� were reoptimized for each x value, using an ex-
haustive search procedure, as described above). The results are
shown in Figure 7 (dashed line). The curve has an asymptote at
�0.4 bits. At this stage increasing the proportion of afferents
involved in the pattern does not help much. What limits the
detector’s performance is mainly that the patterns are missed if
no reset occurs during the presentations. Thus better perfor-
mance can be achieved by using more frequent resets, as we ver-
ified by running another batch of simulations with resets every
125 ms on average (dotted line). However, we were mainly inter-
ested in the shape of the curves, and it is surprising that the
performance cutoff only occurs at x � 10%.

Benchmark 4: LIF input neurons � oscillatory drive
We then suppressed the resets, and plugged an oscillatory current
(Fig. 2, Eq. 2) and affinely mapped the matrix activation levels
into an additional static input current between 0.95 � Ithr and
1.07 � Ithr. This leads to a current-to-phase conversion: the neu-
rons that receive the strongest static currents will fire first during
the phase of the cycle (Buzsáki and Chrobak, 1995; Hopfield,
1995; Mehta et al., 2002; Brody and Hopfield, 2003; Buzsáki and
Draguhn, 2004; Lisman, 2005; Fries et al., 2007). Here the static
current range is such that each afferent emits between one and
three spikes per cycle, leading to a mean input spike rate of 14.2
Hz. The phase of the first spike is a decreasing function of the
static input current. What is remarkable is the speed of conver-
gence: with constant static currents phase locking occurs in 1–2
cycles, regardless of the initial membrane potential. The phase
thus rapidly depends almost entirely on the current input cur-
rent, and not on the neuron’s past history.

Figure 4. Resets— end of learning. Here we plotted the same variables as in Figure 3 after �800 s of learning. A, Input spike
trains. B, Postsynaptic membrane potential as a function of time. Selectivity has emerged. Resets still provoke oscillations in the
membrane potential, but they are usually too weak to reach the threshold, unless the reset was performed during a pattern period
(as it is the case at t � 800 s). This is not always the case, since at t � 800.4 s there is a false alarm. The second pattern presentation
is missed because there was no reset during the pattern and therefore the spike times do not match those of the repeating spike
waves of Figure 3A insets. C, Distribution of synaptic weights at t � 802.5 s. It became bimodal, with �60 synapses maximally
reinforced and the rest of them fully depressed. D, Synaptic weights for afferents 0 … 199 (involved in the pattern) as a function
of their corresponding pattern activation levels. STDP reinforced the afferents with the highest levels.
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We again set x � 10%, and Imax � 0.05
nA (meaning the equivalent of 35 syn-
chronous spikes arriving through maxi-
mally reinforced synapses are needed to
reach the threshold from the resting state)
and a�/a� � 1.48, after the exhaustive
2D grid search described above.

Figure 5 describes the situation at the
beginning of the simulation, and should
be compared with Figure 3. Figure 5A
plots the input spike trains. It can be seen
that most of the spikes are emitted during
the rising part of the sinusoid. Three insets
zoom on adequate periods to demonstrate
that the oscillations within patterns gen-
erate identical spike waves (except for the
noise, here responsible for a 1.1 ms me-
dian jitter) for the afferents involved in
the pattern. It is this repeating spike wave
that STDP is going to catch, again thanks
to its “reinforcement of causality links”
property.

Figure 5B plots the postsynaptic mem-
brane potential. At this stage the postsyn-
aptic neuron is not yet selective: it fires at
least once at every cycle, whether or not
the pattern is there. This is not surprising
since we start from uniformly distributed
random weights (Fig. 5C). For the same
reason, the pattern activation levels and
the corresponding weights are uncorre-
lated at this stage (Fig. 5D).

Again, Figure 6 plots the same vari-
ables after 802.5 s of simulated time and
demonstrates that selectivity has emerged:
postsynaptic spikes are now related to the
presence of the pattern. The weights have
converged, again toward a bimodal distri-
bution (Fig. 6C), with �130 selected syn-
apses out of 2000.

Figure 6D plots the relationship be-
tween the pattern activation levels and the
final synaptic weights for the 200 afferents
involved in the pattern. In this simulation
after convergence the phase of the postsyn-
aptic spike when the pattern is presented is
�5.1 rad. Very weak pattern activation
levels (i.e., input currents) lead to one pre-
synaptic spike per cycle with a phase �5.1
rad. The corresponding synapses are thus
systematically depressed, until zero is
reached, as can be seen in the left part of
the graph. Slightly greater activation levels
lead to one presynaptic spike per cycle
with phase lower than 5.1 rad; the corre-
sponding synapses are thus fully rein-
forced. Even greater levels lead so several
spikes per cycle with a combination of
LTP and LTD, and one of them over-
comes the other depending on the de-
tailed relationships between presynaptic
and postsynaptic spike phases. Note that
other static input current ranges may lead

Figure 5. Oscillations— beginning of learning. Here we plotted the same variables as in Figure 3, but the afferents now receive
an oscillatory drive. A, Input spike trains. Because of the oscillatory drive input spikes come in waves. Again, pattern periods are
shown in gray. Three insets zoom on adequate periods to illustrate that the spike phases of the afferents involved in the pattern (0
… 199) are the same (except for the noise) for different pattern presentations [the phase grid has a 1 rad (20 ms) step]. This is not
true for afferents not involved in the pattern (200 … 1999) (however those afferents have the same phases in the two right insets
because their activation levels did not change). It is this repeating “spike wave” that STDP can detect and learn. B, Postsynaptic
membrane potential as a function of time. It oscillates, since input spikes come in waves. At this time the postsynaptic neuron is not
selective: the threshold is reached at least once at each cycle, whether or not the pattern is present. C, Distribution of synaptic
weights at t �3 s. Weights are still almost uniformly distributed at this stage, since few STDP updates have been made. D, Synaptic
weights for afferents 0 … 199 (involved in the pattern) as a function of their corresponding pattern activation levels. Both
variables are uncorrelated at this stage.

Figure 6. Oscillations— end of learning. Here we plotted the same variables as in Figure 5 after �800 s of learning. A, Input spike
trains. B, Postsynaptic membrane potential as a function of time. It still oscillates, but now selectivity has emerged: the threshold is reached
if and only if the pattern is present for a sufficient time, in the order of one oscillation period (here 125 ms). The first pattern presentation,
which lasts only 30 ms, is missed. C, Distribution of synaptic weight at t � 802.5 s. It became bimodal, with �130 synapses maximally
reinforced and the rest of them fully depressed. D, Synaptic weights for afferents 0 … 199 (involved in the pattern) as a function of their
corresponding pattern activation levels. The function is piece-wise constant (see text).
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to at most 1 spike per cycle—in this simpler case STDP ends up
reinforcing the synapses with the highest pattern activation levels,
as in the reset case.

Again, the fact that we used an STDP window with a negative
integral led to a subthreshold regime where the postsynaptic neu-
ron performs coincidence detection (Kempter et al., 2001). Here,
it became sensitive to the nearly simultaneous arrival of a subset
of the spikes within the wave of Figure 5A insets and again
postsynaptic spikes tend to indicate the presence of the pattern.

As before, we quantified the detection performance by con-
tinuing the simulation until t � 1000 s and computing the mutual
information over the [800 s, 1000 s] period, using exactly the
same procedure. This was done for various x values, running each
time 10 identical simulations, with different pseudorandomly
generated input matrices and initial weights. The values for Imax

and a�/a� were reoptimized for each x value. The results are
shown in Figure 7 (solid line). The curve has an asymptote at
�0.55 bits. At this stage increasing the number of involved affer-
ents again does not help much. What limits the detector perfor-
mance is mainly that the patterns are missed if they are shown for
less than one period. Performance is slightly higher than with
resets at the same frequency. However, we were again more in-
terested in the shape of the curve, and it is surprising that the
performance cutoff only occurs at x � 10%.

For what frequency range does the proposed mechanism
work? Of course the problem is invariant to a scaling of all the
time constants involved. These are of four kinds: the STDP time
constants (�� and ��), the neuronal and synaptic time constants
(�m, �s, and refractory period), the time constants that are specific
to the problem (mean �t and mean inter pattern interval), and
the oscillation period. Scaling the STDP time constants does not
make much sense, since most of the experimentalists find �� �
20 –30 ms and �� � 10 –20 ms (Caporale and Dan, 2008). Scaling
the neuronal time constants makes more sense, since a broad
range of values are found in the brain, and the neurons can be in
a high-conductance state (Destexhe et al., 2003). Scaling the
problem time constant is also legitimate, since the brain has to
deal with signals with a broad range of intrinsic timescales. We

thus kept the STDP time window constant and varied the oscil-
lation period, rescaling the neuronal and problem time constants
accordingly (note that this is numerically equivalent to scaling
only the STDP window while keeping everything else constant).
This means in particular that the inputs for the STDP neuron
were the same except for a time scaling factor. By scaling the
neuron time constants with the oscillation period, we avoid tak-
ing into account signal detection aspects (for example, a neuron
with a high �m could not discriminate between two different short
spike waves). By scaling the problem time constants with the
oscillation period, we counterbalance the advantage of fast oscil-
lations for detecting short pattern presentations. This way we
only study the interactions between the oscillations and the STDP
intrinsic time scales, all other things being equal.

Figure 8 plots the results in terms of mutual information esti-
mated over the [800 s, 1000 s] period for 10 simulations with x �
10%. The values for Imax and a�/a� were optimized for each
point using the exhaustive search procedure described earlier,
though this time the ratio for the a�/a� was 1.05 0.5 � 1.02, as it
needed to be fine-tuned with fast oscillations. The “all-to-all”
mode, used in the baseline simulations, gave acceptable results up
to �25 Hz. But with faster oscillations, the weight updates are too
corrupted by preceding and subsequent spike waves and learning
fails. A way to limit this problem is to implement the “nearest
spikes” mode. This shifts the curve of 0.5 to 1 octave, leading to a
cutoff of �40 Hz. However, there is still much debate about
whether “nearest spikes” or “all-to-all” modification rules for
STDP are more biologically realistic (Burkitt et al., 2004).

Discussion
Several authors have already proposed oscillation-based mecha-
nisms that can perform a current-to-phase conversion (Buzsáki
and Chrobak, 1995; Hopfield, 1995; Mehta et al., 2002; Brody and
Hopfield, 2003; Buzsáki and Draguhn, 2004; Lisman, 2005; Fries
et al., 2007). Recently, such mechanisms have received experi-
mental support in vitro (McLelland and Paulsen, 2009), and
could account for the numerous cases of PoFC observed in vivo
(see Table 1). More generally, there is both theoretical (Brette and
Guigon, 2003) and experimental (Hasenstaub et al., 2005;
Schaefer et al., 2006; Markowitz et al., 2008) evidence that a com-
mon oscillatory drive for a group of neurons, periodic or not,
improves the reliability of their spike times, by decreasing their
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sensitivity to the initial conditions, and avoiding jitter accumula-
tion, so that the spike times depend reliably on the current input
values.

But this raises the question of why the brain would need to use
such an oscillatory mechanism to control spike times. We suggest
that it is to facilitate downstream processing by STDP. Surpris-
ingly, a single neuron equipped with the learning rule robustly
detects and learns a repeating activation pattern that affects an
unknown subset of only 10% of its afferents, under conditions
where the duration of the patterns is unpredictable and where the
patterns recur at unpredictable intervals. After learning, recogni-
tion is robust, and only takes one cycle. More conventional rate-
based coding/learning schemes would require at least a few
interspike intervals to estimate the rates (Gautrais and Thorpe,
1998), and a rate-based Hebbian learning rule instead of STDP.
This is the reason why benchmarks 1 and 2, in which only the
rates repeat, failed.

The use of global potential resets is a similar alternative to a
common oscillatory drive, which also leads to reproducible spike
times that STDP can pick. This may be a valid description of
what happens during discrete sensory processing such as sac-
cades or sniffs (Uchida et al., 2006), or with “stimulus onset
paradigms.” But the fact that periods of oscillatory activity are
found throughout the brain, and the suggestion that they
could be particularly useful for the continuous cognitive pro-
cesses, means that the oscillatory drive model may be of con-
siderable theoretical importance.

Consistent with this model, a growing body of experimental
evidence in animals and humans demonstrates that successful
long-term memory encoding correlates with increased oscilla-
tory activity across a broad range of frequencies (from theta to
gamma), in both sensory and associative areas [for recent re-
views, see Jensen et al. (2007), Klimesch et al. (2008), and Tallon-
Baudry (2009)]. Interestingly, beyond mere oscillation power
what seems to be a prerequisite for successful memory forma-
tion is that single units should be phase-locked to the oscilla-
tion (Rutishauser et al., 2009), as in our model. In addition, even
prestimulus oscillatory activity can predict successful episodic
memory encoding in humans (Guderian et al., 2009), indicating
that the facilitating oscillations are ongoing and internally gener-
ated, and not evoked by the stimulus—as the ones we used in this
work.

How about PoFC in the high gamma range (say �40 Hz)? Our
results suggest that it is not optimal for STDP-based learning and
decoding, at least with the STDP time windows observed so far,
but not that it does not exist. However evidence for it is still scarce
in the cortex. For example, Montemurro et al. (2008), Ray et al.
(2008), and Kayser et al. (2009) all looked for it unsuccessfully
[but see König et al. (1995), Fries et al. (2001), Hoffman et al.
(2009), and Koepsell et al. (2009) for exceptions]. In the studies
by Jacobs et al. (2007) and Ray et al. (2008), some spikes did lock
to gamma oscillations, but the preferred phases always tended to
be near the oscillation peaks, ruling out PoFC, but suggesting
instead a binary code in which information would be coded in the
combination of neurons which fire at least once in each oscilla-
tion cycle. Such a code could probably be decoded by STDP, but
it is beyond the scope of this paper.

The ability of STDP to detect and learn repeating spike pat-
terns had been noted before in the case of continuous activity
(Masquelier et al., 2008). Oscillations are thus not needed for the
proposed mechanism to work provided some input spike pat-
terns repeat reliably. But first, as mentioned earlier, oscillations
provide one appealing way to generate the repeating precise input

spike times [an issue that was not addressed by Masquelier et al.
(2008)]. Second, spike patterns appear to be easier to learn when
embedded in oscillatory activity than in continuous background
activity: learning becomes possible when only 10% of the affer-
ents are involved in the repeating patterns, compared with a min-
imum value of about 40% for continuous activity in the previous
study (Masquelier et al., 2008). Note, however, that in both stud-
ies the values refer to the minimum number of afferents that need
to be involved to allow detection by a single neuron. Reliability
can easily be increased by increasing the number of “listening”
neurons. The mechanism using an oscillatory drive is also more
robust to changes of parameters, in particular of the threshold.

Somewhat surprisingly, only a few papers have studied STDP
in the context of oscillating presynaptic activity. One of them
(Gerstner et al., 1996) showed how STDP selects connections
with matching delays from a broad distribution of axons with
random delays, giving rise to fast and time-accurate postsynaptic
responses. Yoshioka (2002) also demonstrated the pertinence of
STDP in oscillating associative memory networks. Closer to our
work, in a recent study modeling the locust olfactory system, the
authors also injected the output of an oscillating neural popula-
tion into a neuron equipped with STDP, and convincingly dem-
onstrated that the rule did a better job than a more conventional
rate-based Hebbian rule at explaining both the sparsity and the
selectivity observed experimentally (Finelli et al., 2008). They
used a discrete finite set of (odor) stimuli, and each of them had
to be presented several times in a row for the system to learn it.
This is quite different from what we are doing here, namely un-
supervised learning of an arbitrary pattern of real valued activation
levels, that repeatedly appears during unpredictable durations
and at unpredictable intervals, and that does not concern all the
afferents.

What happens if there is more than one repeating pattern
present in the input? We verified that as the learning progresses,
the increasing selectivity of the postsynaptic neuron rapidly pre-
vents it from responding to several patterns. Instead, it randomly
picks one, and becomes selective to it and only to it. To learn the
other patterns other neurons listening to the same inputs are
needed. As in our previous work (Masquelier et al., 2009), lateral
inhibitory connections between those “listening” neurons could
implement a competitive mechanism in which the first neuron to
fire strongly inhibits the others, thereby preventing the neurons
from learning the same patterns.

Together these results suggest how two simple mechanisms
present in the brain may combine to induce a kind of temporal
coding: oscillations allow information to be encoded in the spike
phases, and STDP provides an appealing mechanism that can
learn how to decode it. The two mechanisms interact construc-
tively for a large range of oscillation frequencies. Of course, we do
not claim this code is the only one at work in the brain. Popula-
tion rate coding, temporal coding with respect to stimulus onset
and PoFC, to cite only these schemes, are not mutually exclusive,
but could be nested to encode information on different time
scales (Kayser et al., 2009).
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Specific entrainment of mitral cells during gamma oscillation in the rat
olfactory bulb. PLoS Comput Biol, in press.

Delorme A, Perrinet L, Thorpe J, Samuelides M (2001) Networks of
integrate-and-fire neurons using rank order coding B: spike timing de-
pendent plasticity and emergence of orientation selectivity. Neurocom-
puting 38 – 40:539 –545.
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